
GOF Patterns Applied
Kirk Knoernschild

TeamSoft, Inc.
www.teamsoftinc.com

http://techdistrict.kirkk.com
http://www.kirkk.com
pragkirk@kirkk.com

www.teamsoftinc.com

mailto:pragkirk@kirkk.com
mailto:pragkirk@kirkk.com
http://www.teamsoftinc.com
http://www.teamsoftinc.com


GOF Patterns in Java

➡Pattern Review
• The Patterns
• Pattern Retrospective



Patterns Defined

• Recurring solution to common problem 
tailored to context

• Patterns have at least the following:
– Name, Problem, Solution, Consequences

• Patterns are to design as Algorithms are to 
code



Pattern Review

• Must tailor to context
• Benefits

– Proven design, communication

• Negative Effects
– Hype, Proliferation, Overuse, Misapplication



GOF Patterns

• 23 seminal patterns
• Creational (5) (Singleton, Builder)

– Patterns for creating complex structures
• Structural (7) (Decorator)

– Patterns for representing complex structures
• Behavioral (11) (Strategy, Command, Observer, Mediator)

– Patterns for accommodating complex 
collaborations and algorithms



GOF Patterns in Java

• Pattern Review
➡The Patterns

• Pattern Retrospective



Command

• Intent: Encapsulate a request as an object 
allowing you to parameterize clients with 
different requests

• Our Problem: Lot of Data Access Objects 
(DAO), each with strikingly similar 
functionality



Possible Solutions

• Alternative: Inherit all DAO from a common 
base class

• Command: Parameterize a generic DAO with a 
SQL request

• Tradeoffs
– Lots of SQL request classes
– Easy to add new SQL request classes
– Any class can be a Command if the Command is an 

interface



Command Structure

1. Client creates the ConcreteCommand
2. Invoker receives the Command
3. Invoker issues request by calling Command operation(s)



DAO Command Structure



Singleton

• Intent: Ensure a class has only one 
instance, and provide a global access point

• Our Problem: DataBaseDAO is inherited 
from a common base class to support other 
types of datasources



Possible Solutions

• Alternative: A utility class or static 
methods

• Singleton: DataBaseDAO with private 
constructor and static getInstance method

• Tradeoffs
– Supports polymorphism and callbacks
– Minimize object creation



Singleton Structure

1. Static instance attribute of Singleton datatype
2. Static getInstance method that returns a reference to instance



DataBaseDAO Singleton

getConnection method can be 
overidden by other DAO types (ex. 
Those accessing a legacy system)



Decorator

• Intent: Add responsibilities to an object 
dynamically

• Our Problem: Need ability to log and 
execute SQL statement without bind 
variables



Possible Solutions

• Alternative: Utility class that accepts Selectable, 
parses it, and returns SQL string

• Decorator: Class implementing Selectable that 
accepts Selectable to constructor and returns 
appropriate SQL String

• Tradeoffs
– Non-invasive way to enhance functionality
– Additional classes with more complex learning curve 

(or maybe just a different way of thinking about utility 
classes)



Decorator Structure

1. Decorator is 
configured with a 
Component

2. ConcreteDecorator 
provides custom 
behavior

3. Decorator invokes 
operations on 
Component



Selectable Decorator



Strategy

• Intent: Define a family of algorithms, 
encapsulate each one, and allow them to 
vary independently

• Our Problem: Returning ResultSet to 
clients of DataBaseDAO is limited to a 
JDBC datasource



Possible Solutions

• Alternative: Pass back a bean or implement 
ResultSet for other datasources

• Strategy: Create a DataCursor that 
represents a TabularRecordSet

• Tradeoffs
– No dependency on ResultSet and JDBC
– More classes and increased complexity



Strategy Structure

1. Strategy defines the 
interface

2. ConcreteStrategy 
provides the 
implementation



DataCursor Strategy

DataCursor defines operations 
to traverse a dataset and 
retrieve values



Mediator

• Intent: Define an object that encapsulates 
how a set of objects interact

• Our Problem: Queue updates and inserts 
so they are all part of the same Logical Unit 
of Work (LUW)



Possible Solutions

• Alternative: Code it each time or provide utility 
classes to offer some of the reusable functionality

• Mediator: Create a DAOMediator with which 
Updateable and Insertable instances are registered

• Tradeoffs
– Simplifies transaction management
– Centralizes code resulting in bloated mediators



Mediator Structure

ConcreteMediator manages collaboration between Colleague instances
Colleague instances communicate with each other through Mediator



DataBaseDAO Mediator



Observer

• Intent: Define relationship between objects 
so that when one object changes its state, all 
its dependents are notified and updated

• Our Problem: When using the Mediator for 
inserts, how do we manage foreign keys for 
child tables



Possible Solutions

• Alternative: Manage keys using an Array
• Listener: Create a KeyListener so that 

Insertables can be notified of their necessary 
key values 

• Tradeoffs
– Consistent key management
– Abstraction complexity



Observer Structure



KeyListener



Builder

• Intent: Separate the construction of an 
object from its representation so that the 
same construction process can create 
different representations

• Our Problem: Business objects must be 
built differently (ie. Lazy load, fully 
initialized)



Possible Solutions

• Alternative: Retrieve the data and set the 
appropriate values on the business object

• Builder: Configure a business object with a 
builder that initializes the values

• Tradeoffs
– Flexible way to build business objects using different 

and unknown constructions processes
– Adding new business objects (Products) could prove 

very difficult as all builders may need to be modified



Builder Structure



Business Objects

- buildEmployee is actually a Factory Method
- Originating Employee is Director created by Factory Method
- Manager and Staff are Employee instances created by builders



GOF Patterns in Java

• Pattern Review
• The Patterns
➡Pattern Retrospective



Applying Patterns

• Difficult to identify up-front need
• Need usually arises based on complex 

behavior or structure
• Knowing patterns help offer template 

solution
• Tailoring pattern to context based on need 

for flexibility 



Compound Patterns

• Patterns rarely used individually or in a 
vacuum

• Single hierarchy/composition structure may 
consist of many patterns
– Ex. Insertable is a Command, Adapter, 

Observer, Decorator



Overall Structure



Common Traits

• Abstraction
• Hierarchy
• Coupling
• Cohesion



Gleaning Heuristics

• Capture rules common to many patterns
• Famously, “favor object composition over 

class inheritance” 
• Examples of others…

– Avoid implementation inheritance
– Abstractly couple classes
– and many, many more…



Additional Resources

• www.kirkk.com
– JarAnalyzer download and general information 

on software development.

• www.extensiblejava.com
– Resource devoted exclusively to dependency 

management.

Please complete your session evaluation forms

http://www.kirkk.com/
http://www.kirkk.com/
http://www.extensiblejava.com/
http://www.extensiblejava.com/

