
CHAPTER 2
Introduction to the UML

Why should I use the UML? What can it contribute to my software development effort?

To effectively utilize any technology, we must understand what it can positively
contribute to the software development effort. Therefore, before adopting the
Unified Modeling Language (UML), we should answer the following questions:

Why should I use the UML?
What can it contribute to my software development effort?

We begin by formally introducing the UML and defining its intended role in
software development, as stated by the UML’s original creators. Then we take a
brief tour through the history of the UML. To finish, we explore some of the
challenges encountered during software development today, and how the UML
can help reduce these challenges to manageable tasks.

2.0 The UML Defined
The Unified Modeling Language User Guide states the following:

The UML is a language for

• Visualizing
• Specifying
• Constructing
• Documenting

the artifacts of a software-intensive system. [BOOCH99]

39

c02.qxd p039-048 11/15/01 5:37 PM Page 39

Exploring this definition further enables us to realize the true intent of the
UML. As stated previously, the UML is a language. As such, it has an associated
set of rules that must be adhered to if we are to create well-formed, precise mod-
els, just as Java has a set of syntax rules that must be adhered to in order to
create compilable applications. Because it’s only a language, and not a method-
ology, the UML doesn’t dictate how we use the models we create nor the order
in which we create them. This misconception was one of the greatest ones asso-
ciated with the UML early in its life. The UML is not a software process.

To further differentiate the UML from a software process, let’s consider an
analogy. Because Java is a language, the only stipulation to create an application
that will compile is to create an application structure that is syntactically cor-
rect. On the other hand, Java doesn’t dictate how we relate the internal elements
of our system, nor does it impose any design restrictions. Therefore, when we
create a Java application, we not only must write code that is syntactically cor-
rect, but we also must design the application. As discussed in Chapter 1, various
principles and patterns can help guide us in creating a more resilient architec-
ture, which is similar to the UML. The only stipulation the UML imposes upon

40 CHAPTER 2 Introduction to the UML

Visual Programming

Don’t let this analogy to Java confuse you. The UML is not a visual
programming language. The UML enables us to create an expression
of our application in the form of a model. We can’t express many
implementation-specific details in the UML. The UML does map nicely to
Java, and this mapping is discussed in Chapter 3. Helping you to model,
and ultimately design, more effectively is a goal of this book.

A History Lesson?

History of any sort is extremely important, and the software industry is no
exception. It’s important to understand the value of a standardized model-
ing language, as well as the historical impact other languages have had on
the UML. If we ignore this aspect of the UML, we are doomed to repeat
the same mistakes in the UML that were made with other modeling
languages.

c02.qxd p039-048 11/15/01 5:37 PM Page 40

us is to create diagrams that are syntactically correct. How we organize our dia-
grams and what artifacts to produce is the role of a software process. Different
processes will guide us through the creation of a different set of artifacts, which
is a major advantage of the UML. Because it’s process independent, we can inte-
grate the most desirable pieces into our existing software process.

In Table 2.1, we provide descriptions for the previously listed bulleted
points (from The Unified Modeling Language User Guide).

The UML Defined 41

Term Description

Visualizing We’re all familiar with the developer who spends
time at work struggling with a complex chal-
lenge, only to doodle out a solution on a napkin
at that evening’s happy hour. In fact, most of us
have probably done something similar. There’s
something special about creating a visual repre-
sentation. It makes it easier to understand and
work through the problem. The visual and for-
mal nature of the UML takes this doodling a few
steps further. Because the UML is a formal lan-
guage, with its own set of rules, it enables other
developers familiar with the language to more
easily interpret our drawings.

Specifying We must communicate our software system
using some common, precise, and unambiguous
communication mechanism. Again, the formal
nature of the UML facilitates this specification
quite nicely.

Constructing We already know that the UML is a formal lan-
guage with its own set of syntactical rules.
Because of this formality, we can create tools that
interpret our models. Obviously, because these
tools can interpret our models, they can map the
elements to a programming language, such as
Java. Many tools do support this forward-
engineering concept. In fact, this is one of

(continues)

Table 2.1 Characteristics of the UML

c02.qxd p039-048 11/15/01 5:37 PM Page 41

2.1 Origin
The history of the UML is rich, and while we won’t go into detail, it’s important
to understand its deep roots. The UML’s original designers, Grady Booch, Ivar
Jacobson, and James Rumbaugh, realized the software industry was saturated
with a variety of object-oriented modeling languages and methodologies.
Instead of creating another new language, they decided to incorporate the best
of the existing languages and methodologies. In October 1995, version 0.8 of
the Unified Method was released. After some minor revision, including a change
in its name, version 0.9 of the Unified Modeling Language was introduced in
June 1996. About this time, the software industry began to take interest in the
unification effort, and after some additional revisions, version 1.0 of the UML
was submitted to the Object Management Group (OMG) for industry stan-
dardization in January 1997. At this point, a Revision Task Force was formed
by OMG to serve as the UML’s governing body. On November 14, 1997, UML
1.1 was adopted by OMG as the industry standard modeling language. Since
that time, the UML has gone through some minor revisions, mostly pertaining
to use cases, and in June 1999, UML 1.3 was adopted, which is the version of
the UML described in this book.

In Figure 2.1, we see some of the languages and methods that contributed to
the UML.

A complete definition of the UML is contained within the “OMG Unified
Modeling Language Specification” and can be found on the OMG Web site at
www.omg.org. This specification is a robust set of documentation, including
but not limited to, the following:

• UML Summary: A brief history and introduction to the UML
• UML Semantics: The various semantics and rules that compose the

UML and contribute to the creation of well-formed models

42 CHAPTER 2 Introduction to the UML

Term Description

the advantages of using a formal modeling tool.
It enforces the syntactical rules of the UML.

Documenting The models we create are just one of the artifacts
produced throughout the development lifecycle.
Using the UML in a consistent fashion produces
a set of documentation that can serve as a blue-
print of our system.

Table 2.1 Characteristics of the UML (continued)

c02.qxd p039-048 11/15/01 5:37 PM Page 42

• UML Notation Guide: Expression of the graphic syntax composing the
UML

• UML Extensions: Standard UML extension for the unified process and
business modeling

While this specification is a complete set of documentation and provides insight
to the thought and careful planning that went toward the creation of the UML,
it’s not exciting reading. It’s meant primarily for tools vendors, and a book such
as this one provides a more valuable explanation of how the UML can be used
most effectively.

2.2 Role of Modeling
To really understand why we would want to adopt any technology, it’s first
important to understand what problem the technology is trying to solve. Realis-
tically, it does no good to adopt a new technology if it doesn’t solve some prob-
lem or overcome some challenge. Adopting the UML is no different.

Role of Modeling 43

Figure 2.1 Foundations of the UML

Object-Oriented
Software Engineering

Object Modeling
Technique

Schlaer-Mellor

Coad-Yourdon

Booch Method

Many others, including Fusion,
Semantic Object Modeling Approach

(SOMA), and Methodology for
OO Software Engineering of Systems

(MOSES)

c02.qxd p039-048 11/15/01 5:37 PM Page 43

2.2.1 The Challenge

A number of challenges are associated with software development. However,
none presents more obstacles than that of changing requirements. In Chapter 1,
we learned that it costs twice as much to maintain a system as it costs to develop
it, and that during development, only 15 percent of our time is actually devoted
to programming. These statistics are proof that a system is never really complete
until it has been removed from production and is no longer functioning. Until
that point, time and money are spent adding new features, fixing bugs, and even
improving its internal structure. This entire maintenance effort is typically the
result of growing and changing requirements. If requirements were static, once
these requirements were realized in a functioning system, the system would be
complete and require no more maintenance, ultimately incurring no additional
cost. So the real challenge in software development is dealing with these chang-
ing requirements. Therefore, we need a technology that helps us deal effectively
with changing requirements.

Before we explore how we can more effectively manage a dynamic set of
requirements, let’s first review why changing requirements are so frustrating to
deal with. In Chapter 1, we briefly discussed the architecture paradox. This
paradox recognizes that a system has the competing goals of survivability and
evolvability. In order for a system to survive, it must meet requirements, but as
requirements change, the system must evolve. Failure to evolve to these
changes means the system loses its survivability. Therefore, our system’s archi-

44 CHAPTER 2 Introduction to the UML

Maintenance versus Reuse

The object-oriented paradigm carries with it the promise of reuse. How-
ever, reuse may not be the true benefit of object orientation. If the main
obstacle in software development is accommodating changing require-
ments, we should be in search of a technology that allows our systems to
adapt more flexibly to change. Fortunately, object orientation carries with
it this benefit at least as much as, if not more than, the benefit of reuse. In
Chapter 1, we briefly discussed this issue. We offer a gentle reminder here
because of the emphasis that we’ll place on architecting resilient systems
that are easier to maintain versus attempting to architect systems that real-
ize a high degree of reuse, at least initially. Stressing resiliency will continue
to be a key aspect of our discussions as we progress through the remainder
of this book.

c02.qxd p039-048 11/15/01 5:37 PM Page 44

tecture directly impacts the ability of a system to evolve gracefully. This is the
same conclusion reached in Chapter 1, and it now becomes clear that the fol-
lowing holds true:

The cost to maintain a system is directly related to the resiliency of the
system’s architecture.

Therefore, the challenge in developing software is to develop software that is
well architected.

2.2.2 Complexity of Architecture

Developing software is an inherently complex process. In The Mythical
Man-Month, Frederick Brooks cites two complexities associated with software
development. He categorizes them as essential complexities and accidental com-
plexities [BROOKS95]. Essential complexities are those difficulties that are
inherent in the nature of software, whereas accidental complexities are difficul-
ties that attend the production of software but can be eliminated.

There have been many attempts to eliminate accidental complexity. Exam-
ples of accidental complexity include a mismatch of tools or paradigms, a lack
of formal methodologies or models, and awkward programming languages.
Years ago, we wrote software using assembly language, which was a time-
consuming process. Programming languages have evolved since then, and today
we are able to focus more on our problem domain and spend less time strug-
gling with various technical issues such as performance and hardware con-
straints. With each of these advances, certain accidental complexities are
reduced. These advances, however, introduce new accidental complexities, such
as those associated with mapping an object-oriented system to a relational data-
base for persistent storage, known as the object/relational impedance mismatch.

The more interesting of these complexities, essential complexity, cannot be
eliminated and is inherent in the nature of software. It’s fairly common to see
comparisons between software engineering and other engineering disciplines.
The electronics industry has a set of canned components that can be used in
many different types of electronics, which carries with it obvious advantages.
Why do we not have similar components in the software industry? Only
recently has this concept of component-based development been gaining
steam. The problem is that certain properties of software development aren’t
found in many other engineering disciplines. First, software is invisible. Obvi-
ous contradictions aren’t easily caught because software has no geometric rep-
resentation as electronic components do. No dictating physics are associated
with software. When designing an electric circuit, or building a skyscraper,

Role of Modeling 45

c02.qxd p039-048 11/15/01 5:37 PM Page 45

mathematical limitations are placed on what we can do. Software typically
doesn’t have this same set of restraints. Because of its invisibility, software
often is seen as infinitely changeable. It would be absurd to consider changing
the structure of a 100-story high-rise once it’s 90 percent complete. This
doesn’t always hold true with software. Therefore, we need to create software
systems that are infinitely malleable. Put simply, people and businesses change,
and demand that the software do so as well. Therefore, the fashioning of these
complex, yet malleable, structures in a programming language can be a diffi-
cult and challenging task. This task is the complex essence of software engi-
neering, and when we’re able to reduce this essential complexity, we’ll have
taken a small step forward.

2.2.3 The Remedy

Because we can’t eliminate essential complexity, we can hope only to reduce it.
The UML, and visual modeling, is a tool that can be used to help reduce essen-
tial complexity. By creating visual representations of our software system, it’s
easier to identify contradictions that may have been previously overlooked.
Thus, visual modeling enables us to create systems that are flexible enough to
achieve a higher degree of resiliency. While it isn’t necessarily true that we
wouldn’t be able to create a flexible design without modeling, creating a visual
representation of a system can help all individuals involved to more fully under-
stand that system. Consequently, each of these individuals will see a common
system with little ambiguity. This common perspective helps increase communi-
cation among our team members and also helps each team member more fully
understand the system. If we better understand something, we can work with it
more effectively.

Though we may never be able to accommodate every single change sce-
nario, working toward this goal gives our system the extra degree of flexibility
that it might need to survive longer and grow into the future. In addition to
visual modeling, associated principles, patterns, and other proven best practices
just might give us what we need to turn adequate designs into great designs.

2.3 Benefits
At this point, we should have a much clearer understanding of what the UML
is and what it is not. We’ve also probably begun to formulate our own theories
as to why we would want to model, and what some of the benefits of doing so
are. In this section, we discuss the obvious, and the not-so-obvious, benefits of
the UML.

46 CHAPTER 2 Introduction to the UML

c02.qxd p039-048 11/15/01 5:37 PM Page 46

One of the greatest benefits of using the UML is that it facilitates a common,
precise, unambiguous, and unified communication mechanism. While other
modeling languages may claim to provide the first of these three benefits, only
the UML can lay claim to unification. It’s the industry standard modeling lan-
guage. For those of us who continue to take advantage of the benefits provided
from other traditional languages, a transition to the UML provides the added
benefit of unification.

Modeling also enables us to create simplified representations of our sys-
tems. By modeling at different levels of abstraction, we can communicate a dif-
ferent intent by creating different models. We have to be cautious here. If we
model at too high a level of abstraction, our model loses the value of its original
intent. Regardless, the ability to communicate bits and pieces of the overall sys-
tem contributes to a more manageable understanding of our system. We’ll con-
tinue to explore this concept as we progress throughout this book.

As we’ve seen, developing software is an inherently complex process. Just
like the developer who doodles on a napkin to gain further insight into the
problem at hand, modeling serves as an excellent problem-solving mechanism.
Reaching resolution on our most complex problems in visual form prior to
coding contributes to a more resilient system. Similar to problem solving, mod-
eling can help us validate our theories. When confronted with a problem, it’s
highly likely that we will consider multiple solutions. Modeling can validate
that we’ve chosen the solution that is most viable considering the context of
the problem.

Benefits 47

Modeling as an Activity

While we often discuss modeling as if it were an activity, we must keep in
mind that we shouldn’t treat modeling as a formal stage in the software
development lifecycle. Nor should we be led to believe at any point in time
that creating a model adds value to our system. The only value that can be
added to our system comes in the form of source code that is error free and
functionally correct. In fact, while we use the term modeling, we model
primarily to produce higher-quality designs. However, modeling does con-
tribute to the creation of a successful system by helping us manage com-
plexity and solve difficult challenges. Consequently, modeling is an
omnipresent activity performed throughout all stages of the software
development lifecycle. We model because it helps us analyze problems and
design more effective solutions that can be communicated effectively.

c02.qxd p039-048 11/15/01 5:37 PM Page 47

While we discuss the UML throughout this book in the context of develop-
ing Java applications, the UML is language independent. In Chapter 3, we
define the mappings from the UML to Java. Mappings such as these exist for
any other object-oriented programming language.

2.4 Conclusion
Modeling has taken a strong foothold in software development and is undoubt-
edly here to stay. The UML was created to provide the software development
community with a standard, unified modeling language. The UML has a rich
history and was created by some of the most well-respected methodologists in
the software industry.

While modeling is not the silver bullet for software development, it has
numerous benefits, which include enhanced communication, validation of our
design theories, and helping to simplify an inherently difficult process. By tak-
ing advantage of these benefits, we can produce systems that will survive as
the demands of our users and business change. In some regards, all projects
utilize a certain degree of modeling. The choice to use a formal language such
as the UML should be given serious consideration. The result can be a much
more resilient design, which can reduce the cost associated with the mainte-
nance effort.

48 CHAPTER 2 Introduction to the UML

c02.qxd p039-048 11/15/01 5:37 PM Page 48

