
CHAPTER 3
Fundamental UML

To effectively use UML,we must understand how we represent diagrams in code.

Before attempting to understand how the UML can be used on a software pro-
ject, we first must understand some of the fundamental elements that compose
the UML. By understanding these fundamental elements, we gain insight into
the building blocks of the UML at all levels. In this chapter, we begin our studies
of many of the most commonly used elements within the UML and how these
elements map to the Java language.

This type of discussion often is centered around the UML metamodel. This
metamodel describes many of the entities and the relationships between these
entities that compose the UML. While this discussion is important, the
metamodel becomes truly important for those individuals responsible for
developing modeling tools. For the majority of corporations, focusing on the
metamodel to gain a deeper understanding of the UML may not be the best use
of their time. Our discussion in this chapter takes a different approach. We’ll
emphasize how the UML is built from the ground up, emphasizing the most
often used elements.

3.0 Models and Views
The UML is more than a set of disjointed diagrams. Instead of examining the
UML from a diagram-centric perspective, let’s turn our attention to an illustra-
tion of the UML from three different perspectives. Figure 3.1 depicts three divi-
sions within the UML. Further insight into these divisions enables us to realize

49

c03.qxd p049-072 11/15/01 5:38 PM Page 49

one of the greatest benefits of modeling, which is creating different views of our
software system.

3.0.1 Fundamental Elements

At the lowest level in Figure 3.1 exist the fundamental elements. These basic
building blocks are the elements of which diagrams are composed. By them-
selves, these elements contribute little to the specification of a software system.
However, understanding the intent of each element enables us to create precise
diagrams because each of the elements has a very unambiguous meaning. These
lower-level elements are described in detail in section 3.2, later in this chapter.
Keep in mind that once we understand the characteristics of an element, these
characteristics apply wherever that element is used.

50 CHAPTER 3 Fundamental UML

Figure 3.1 UML Perspectives

Model

Views

Class Diagram
Sequence Diagrams

Class Diagram
(Packages)

Individual Diagrams

Use Case 1

Use Case 2

Actor

Fundamental Elements

c03.qxd p049-072 11/15/01 5:38 PM Page 50

3.0.2 Diagrams

Above the fundamental elements is the perspective on the UML that many of us
are familiar with. The individual diagrams contribute more to the specification
of a software system than a single building block. In essence, we can think of a
diagram as the composition of many of the fundamental elements. For the
majority of us, diagrams play the most important role in contributing to the
specification of our software system. These diagrams are the mechanism that
developers use to communicate and solve problems in the complex aspects of
the system. For instance, class diagrams, which describe the structural relation-
ships that exist among the classes within our system, can guide developers in
understanding our software system’s class structure.

As we begin to incorporate the UML into our environment, it’s typical to
begin by using the individual diagrams to communicate our software structure
and solve problems in the challenging design scenarios. For developers, the most
common diagram is the class diagram. Each of the other diagrams, however,
plays an important role as well. Because of the specific nature of each diagram,
it can be quite effective to use diagrams in conjunction with one another to help
us more fully understand our system.

3.0.3 Views

As we become more proficient in modeling, we begin to realize that using a
combination of diagrams to communicate is most effective. For instance, a class
diagram is valuable in communicating the structural relationships that exist

Models and Views 51

Models and Views

A model is a self-contained representation of a system. Given a model, a
user need not have any other information from other models to interpret
the system. A view can be thought of as any artifact that helps to simplify
the representation of our system. A view is a slice through a model,
whereas a model is a complete view of a system. In this regard, a view is a
subset of a model, and in fact, a model is a view, albeit a complete one. A
view focuses on communicating the system from a particular perspective.
Views almost always omit elements of a model not relevant to the given
situation. In this regard, views describe the architecturally significant
elements of a model from a particular perspective. The differences

(continues)

c03.qxd p049-072 11/15/01 5:38 PM Page 51

between the individual classes within our application. However, a class diagram
says nothing about the ordering of messages sent between the objects within our
application. By combining a class diagram with a diagram whose intent is to
communicate our system’s dynamics, the ability to communicate our system’s
overall intent becomes more powerful.

The combination of a class diagram with a diagram whose intent is to com-
municate our system’s dynamics is a view. A view is a depiction of our system
from a particular perspective. By combining diagrams to form complete views
into the system, we have the innate ability to represent the system from many
different perspectives. In Philippe Kruchten’s article, “Architectural Blueprints—
The 4+1 View Model of Software Architecture,” he describes five distinct views
from which individuals associated with the software development process actu-
ally see the system [KRUCHTEN95]. Figure 3.2 shows these views, and Table
3.1 describes them. As we model our applications, we can create complete mod-
els, each containing multiple views. While each of these views represents the sys-
tem from a different perspective, each represents it from a perspective that is
significant to different individuals associated with the development initiative.

52 CHAPTER 3 Fundamental UML

(continued)

between a model and a view are subtle. Our intent in this discussion is to
help the reader understand one of the primary advantages in modeling—
that is, to create different representations of the system from different
perspectives to aid in communication, while maintaining consistency
throughout.

Figure 3.2 The 4+1 View Model of Software Architecture
Adapted from Kruchten, Philippe,“The 4+1 View Model of Software Architecture,” IEEE Software,
November 1995.

Logical View Development View

Process View Physical View

Use Case View

c03.qxd p049-072 11/15/01 5:38 PM Page 52

Models and Views 53

View Description

Use case This view documents the system from the cus-
tomer’s perspective. Terminology used in this
view should be domain specific. Depending on
the technical nature of our audience, we should
avoid obscure technical terms. Diagrams most
common in this view are the use case diagrams
and, less common, activity diagrams. Organiza-
tions transitioning to the UML may wish to
work only with use case diagrams early and
experiment with activity diagrams over time.

Design This view documents the system from designer’s
and architect’s perspective. Diagrams most com-
mon in this view are class and interaction dia-
grams (either sequence or collaboration), as well
as package diagrams illustrating the package
structure of our Java application.

Development This view documents the components that the
system is composed of. This view typically con-
tains component diagrams. Except for the most
complex Java applications, this view is
optional.

Process This view documents the processes and threads
that compose our application. These processes
and threads typically are captured on class dia-
grams using an active class. Because of the
advanced nature of active classes, coupled with
the volume of use, active classes are beyond the
scope of this discussion. For information, refer
to [BOOCH99].

Physical This view documents the system topology.
Deployment diagrams that compose this view
illustrate the physical nodes and devices that
make up the application, as well as the connec-
tions that exist between them.

Table 3.1 View Descriptions

c03.qxd p049-072 11/15/01 5:38 PM Page 53

These different views are extremely important because end users, developers,
and project stakeholders most likely have different agendas, and each looks at
the system quite differently. While each of these perspectives might be different,
they represent the same system and should be consistent in the information they
convey. In addition, our views can be used to validate each other. The specifica-
tion contained within one view is consistent with the specification within
another. Because of this consistency, we can trace the specification in one view
through the realization of that specification in another. The result is an excellent
way to ensure that when requirements in our use case view change, they can be
traced through the other views, enabling us to make the appropriate changes.
This concept of traceability is further discussed in Chapter 4.

The views in Figure 3.2 may not be the only views from which we look at
the system. We might consider creating a view that is responsible for represent-
ing the architecturally significant elements within an application. In fact, a
view’s intent is to model architecturally significant elements that are relevant to
the perspective the view represents. In some situations, we may be interested in
representing the architecturally significant elements of our system fulfilling a set
of security requirements. In this case, we might create a security view. Architec-
tural modeling is discussed in detail in Chapter 10. The point is that whenever
we need to communicate about the system from a particular perspective, we can
create a view into the system from that perspective, which is consistent with all
other views we have created.

3.1 Core Diagrams
As we’ve seen, we can combine diagrams that form models and that can serve as
views into our system. This capability is illustrated at a higher level in Figure
3.3. If an advantage in modeling is to combine diagrams to form views into our
system, then it only makes sense that each diagram has a different focus on what
it communicates.

Examining the intent of these diagrams, we see that each falls into one of
two categories. Behavioral diagrams depict the dynamic aspects of our system.
They are most useful for specifying the collaborations among elements that sat-
isfy the behavior of our system’s requirements. Structural diagrams depict the
static aspect of our system. These diagrams are most useful for illustrating the
relationships that exist among physical elements within our system, such as
classes.

Of these diagrams, the three most commonly used are use case, sequence,
and class diagrams. These three typically are used on all software development
projects taking advantage of the UML. While still important, the remaining dia-
grams have a more specialized focus, which isn’t to say that these remaining dia-

54 CHAPTER 3 Fundamental UML

c03.qxd p049-072 11/15/01 5:38 PM Page 54

grams don’t serve an important purpose. They definitely do—usually in cases
where a specific, complex portion of our system must be communicated or more
fully understood. Our discussion of using the UML with Java begins with a
focus on these three diagrams.

3.1.1 Behavioral Diagrams

Behavioral diagrams communicate the aspects of the system that contribute to
satisfying the system’s requirements, typically captured in the form of use cases.
Table 3.2 describes the five diagrams that fall into this category. Of these dia-
grams, the most commonly used are use case, sequence, and collaboration dia-
grams. While still useful, activity and state diagrams typically are used on an as-
needed basis. Activity diagrams visually represent behaviors captured by use
cases. State diagrams, on the other hand, are used to illustrate complex transi-
tions in behavior for a single class.

Use case diagrams are centered around the business processes that our
application must support. Most simply, use case diagrams enable us to structure
our entire application around the core processes that it must support. Doing so
enables us to use these use cases to drive the remainder of the modeling and
development effort.

Sequence and collaboration diagrams are forms of interaction diagrams,
which model the interactions among a set of objects. Interaction diagrams are

Core Diagrams 55

Figure 3.3 Diagrams Composing the UML

Use Case
Diagram

Development
Diagram

Statechart
Diagram

Collaboration
Diagram

Class
Diagram

Sequence
Diagram

Object
Diagram

Activity
Diagram

Component
Diagram Views

c03.qxd p049-072 11/15/01 5:38 PM Page 55

used often, primarily because they capture the messages sent between objects,
which is of utmost importance to architects, designers, and developers.

Both sequence and collaboration diagrams fall into the interaction dia-
grams category because these diagrams are semantically equivalent—that is,
they specify the same behaviors. The difference is the vantage point from which
they express them. Collaboration diagrams focus on the spatial layout of the
object interactions. They’re useful in identifying structure among the classes,
because the format of a collaboration diagram is similar in layout to that of a
class diagram. Sequence diagrams, on the other hand, are focused on communi-
cating the time ordering of messages sent among the objects. Because of their
similar nature, it’s quite common for a development team to standardize on the
usage of either a sequence or collaboration diagram but not on both.

56 CHAPTER 3 Fundamental UML

Diagram Description

Use case Shows a set of actors and use cases, and the rela-
tionships between them. Use case diagrams con-
tribute to effective model organization, as well as
modeling the core behaviors of a system.

Activity Models the flow of activity between processes.
These diagrams are most useful in detailing use
case behavior. An activity diagram doesn’t show
collaboration among objects.

State Illustrates internal state-related behavior of an
object. Transitions between states help identify,
and validate, complex behavior. A class can have
at most a single state diagram.

Sequence Semantically equivalent to a collaboration dia-
gram, a sequence diagram is a type of interaction
diagram that describes time ordering of messages
sent between objects.

Collaboration A type of interaction diagram that describes the
organizational layout of the objects that send
and receive messages. Semantically equivalent to
a sequence diagram.

Table 3.2 Behavioral Diagrams

c03.qxd p049-072 11/15/01 5:38 PM Page 56

3.1.2 Structural Diagrams

Diagrams in this category are focused on specifying the static aspects of our sys-
tem. Table 3.3 describes the structural diagrams. Of these four diagrams, the
class diagram is most often used. In fact, when transitioning to the UML, most
organizations tend to use class diagrams first because they are excellent mecha-
nisms for communication among developers, as well as tools that can be used
for problem solving.

There are two forms of class diagrams. The first is the most commonly
understood and consists of the classes that compose our system and of the
structure among these classes. Unfortunately, the second is not often used but
is of equal importance and can be most effective in helping developers under-
stand our system from a high level. A type of class diagram, called a package
diagram, often represents the Java packages and the dependencies between
them that our application consists of. An example of a package diagram is
provided in Figure 3.6.

The remaining structural diagrams, while still useful, have niches in model-
ing that are focused on certain types of applications. Without undermining the

Core Diagrams 57

Diagram Description

Class Illustrates a set of classes, packages, and rela-
tionships detailing a particular aspect of a sys-
tem. This diagram is likely the most common
one used in modeling.

Object Provides a snapshot of the system illustrating the
static relationships that exist between objects.

Component Addresses the static relationships existing
between the deployable software components.
Examples of components may be .exe, .dll, .ocx,
jar files, and/or Enterprise JavaBeans.

Deployment Describes the physical topology of a system.
Typically includes various processing nodes,
realized in the form of a device (for example, a
printer or modem) or a processor (for example, a
server).

Table 3.3 Structural Diagrams

c03.qxd p049-072 11/15/01 5:38 PM Page 57

importance of these diagrams, suffice it to say that use of these diagrams should
be dictated by the complexity of our system. Component diagrams might be
used to show the software components within our application. Components
aren’t equivalent to classes. A component might be composed of multiple
classes. Deployment diagrams, which illustrate the physical topology of our sys-
tem, are most useful when we have a complex configuration environment. If our
application is to be deployed to multiple servers, across locations, a deployment
diagram might be useful. Object diagrams depict the structural relationship that
exists among the objects within our running application at a given point in time.
When we think of the runtime version of our system, we typically think of
behavior. Many people have found that object diagrams are most useful in flesh-
ing out the instance relationships among objects, which in turn can help verify
our class diagrams. Beyond this, object diagrams are not often used.

3.2 Fundamental Elements
Our discussion on the fundamental elements is in two sections. Section 3.2.1
discusses the structural elements that represent abstractions in our system.
Structural elements typically are elements that encapsulate the system’s set of
behaviors. In section 3.2.2, we discuss the relationships that define how the
structural elements relate to each other. Throughout our discussions of these
elements, we provide mappings to the Java language.

3.2.1 Structural Elements

We have broken our discussion of structural elements into two sections. In sec-
tion 3.2.2, we discuss Java-independent entities, which are elements that don’t
have a Java language mapping. Then, in section 3.2.3, we turn our attention to
the Java-dependent entities, which are elements that have a straightforward
Java mapping. The UML includes other structural elements that are beyond the
scope of our discussion.

In our discussion of the structural elements, we use a template. At the top
left is the name of the element. In the top center of the template is a graphic
representing the element as it appears on a diagram. On the top right is the dia-
gram(s) on which this element most often appears. Syntactically, placing these
elements on diagrams not documented here might be correct. However,
because we’re using a simple approach, our discussion is focused on the dia-
gram on which this element appears most often. In some cases, elements
appear on more than one diagram, and in these special cases, the documenta-

58 CHAPTER 3 Fundamental UML

c03.qxd p049-072 11/15/01 5:38 PM Page 58

tion reflects that. The top right section of the template is broken down into the
following categories:

• Specific diagram: This element can appear on any of the diagrams men-
tioned at the beginning of this chapter. Replace specific with the dia-
gram name.

• Structural diagram: This element can appear on any of the structural
diagrams, as categorized at the beginning of this chapter.

• Behavioral diagram: This element can appear on any of the behavioral
diagrams, as categorized at the beginning of this chapter.

• Combinatorial: Any combination of the preceding can be used.

Following the top section of each element is a description of that element. In
section 3.2.3, a table with two columns is included. The left column shows a
Java code snippet. The right column shows the UML representation of this
code.

3.2.2 Java-Independent Entities

Actor Use Case Diagram

An actor represents a role that a user of the system plays. An actor always is
external to the system under development. An actor need not always be a per-
son. An actor might be another external system, such as a legacy mainframe
from which we are obtaining data, or possibly a device, which we must obtain
data from, such as a keypad on an ATM machine.

Use Case Use Case Diagram

A use case represents a sequence of actions that a software system guarantees to
carry out on behalf of an actor. When defining use cases, the level of granularity
becomes important. The level of granularity varies among systems. The one
constant is that a use case should always provide a result of an observable value
to an actor. Primary business processes typically are good candidates for use
cases. This way, these individual use cases can drive the development effort,
which is focused on core business processes. This enables us to trace our results
throughout the development lifecycle. A use case should be focused on the sys-
tem from a customer’s perspective.

Fundamental Elements 59

c03.qxd p049-072 11/15/01 5:38 PM Page 59

Collaboration Use Case Diagram

A collaboration is somewhat beyond the scope of our discussion in this book.
However, because we use examples in later chapters, it should be introduced for
completeness. Collaborations most often are used to bring structure to our
design model. They enable us to create sequence and class diagrams that work
in conjunction with each other, to provide an object-oriented view into the
requirements that our system satisfies. A collaboration typically has a one-to-
one mapping to a use case. This way, while use cases represent requirements
from a customer’s vantage point in the use case view, a collaboration models
these same set of requirements from a developer’s perspective.

Object

An object is an instance of a class. It is represented by a rectangle. An object can
be named in three different ways. First, and probably most common, we can
specify the class that this object is an instance of. This is done by specifying the
class name in the object rectangle. The class name is preceded by a semicolon
and underlined. Second, we can specify only the object name, neglecting the
class name, which is done by omitting the class name and semicolon and simply
typing the object name and underlining it. In this naming scenario, we don’t
know the class that this object is an instance of. The third way to represent an
object is to combine the two previously mentioned approaches.

An object can also be thought of as a physical entity, whereas a class is a
conceptual entity. At first glance, it may seem odd that an object doesn’t have a
Java language mapping. In fact, it does. An object in the UML maps directly to
an object in Java. However, when developers create Java applications, they are
creating Java classes, not Java objects. Developers never write their code inside a
Java object. Thinking about this a little differently, we think of objects as exist-
ing at runtime and classes as existing at design time. Developers create their
code and map the UML elements to Java at design time, not runtime. Therefore,
while a UML object maps directly to an object in Java, no Java language map-
ping represents a UML object.

Interaction and
Object Diagrams

Object:Class

60 CHAPTER 3 Fundamental UML

c03.qxd p049-072 11/15/01 5:38 PM Page 60

3.2.3 Java-Dependent Entities

Class Class Diagram

A class is a blueprint for an object. A class has three compartments. The first
represents the name of the class as defined in Java. The second represents the
attributes. Attributes correspond to instance variables within the class. An
attribute defined in this second compartment is the same as a composition rela-
tionship. The third compartment represents methods on the class. Attributes
and operations can be preceded with a visibility adornment. A plus sign (+) indi-
cates public visibility, and a minus sign (–) denotes private visibility. A pound
sign (#) denotes protected visibility. Omission of this visibility adornment
denotes package-level visibility. When an attribute or operation is underlined, it
indicates that it’s static. An operation may also list the parameters it accepts, as
well as the return type, as follows:

Package Class Diagram

A general purpose grouping mechanism, packages can contain any other type of
element. A package in the UML translates directly into a package in Java. In
Java, a package can contain other packages, classes, or both. When modeling,
we typically have packages that are logical, implying they serve only to organize
our model. We also have packages that are physical, implying these packages
translate directly into Java packages in our system. A package has a name that
uniquely identifies it.

Class Name

Attributes

Operations

Fundamental Elements 61

Java UML

public class Employee {
private int empID;

public double calcSalary() {
…

}
}

Employee

-empID:int

+calcSalary():double

c03.qxd p049-072 11/15/01 5:38 PM Page 61

Interface Class Diagram

An interface is a collection of operations that specify a service of a class. An
interface translates directly to an interface type in Java. An interface can be rep-
resented either by the previously shown icon or by a regular class with a stereo-
type attachment of <<interface>>. An interface typically is shown on a class
diagram as having realization relationships with other classes.

3.2.4 Java-Dependent Relationships

The following examples illustrate the relationships in isolation based on the
intent. Though syntactically correct, these samples could be further refined to
include additional semantic meaning within the domain with which they are
associated.

Each of the following relationships appear on diagrams in the structural
category, most likely class diagrams. Though some, such as association, also
appear on use case diagrams, their discussion is beyond the scope of this book.

Dependency Structural Diagram

A “using” relationship between entities that implies a change in specification of
one entity may affect the entities that are dependent upon it. More concretely, a

62 CHAPTER 3 Fundamental UML

Java UML

public interface CollegePerson {
public Schedule getSchedule();

}
CollegePerson

getSchedule()

Java UML

package BusinessObjects;

public class Employee {

}

BusinessObjects

c03.qxd p049-072 11/15/01 5:38 PM Page 62

dependency translates to any type of reference to a class or object that doesn’t
exist at the instance scope, including a local variable, reference to an object
obtained via a method call, as in the following example, or reference to a class’
static method, where an instance of that class does not exist. A dependency also
is used to represent the relationship between packages. Because a package con-
tains classes, we can illustrate that various packages have relationships between
them based upon the relationships among the classes within those packages.

Association

A structural relationship between entities specifying that objects are connected.
The arrow is optional and specifies navigability. No arrow implies bidirec-
tional navigability, resulting in tighter coupling. An instance of an association
is a link, which is used on interaction diagrams to model messages sent
between objects. In Java, an association translates to an instance scope vari-
able, as in the following example. Additional adornments also can be attached
to an association. Multiplicity adornments imply relationships between the
instances. In the following example, an Employee can have 0 or more TimeCard
objects. However, a TimeCard belongs to a single Employee (that is, Employees
do not share TimeCards).

Structural & Use
Case Diagrams

Java UML

public class Employee {
public void

calcSalary(Calculator c) {
…

}
}

CalculatorEmployee

Java UML

public class Employee {
private TimeCard _tc[];
public void maintainTimeCard() {

…
}

}

TimeCard
0 . . *

Employee
1

Fundamental Elements 63

c03.qxd p049-072 11/15/01 5:38 PM Page 63

Aggregation Class Diagram

A form of association representing a whole/part relationship between two
classes, an aggregiation implies that the whole is at a conceptually higher level
than the part, whereas an association implies both classes are at the same con-
ceptual level. An aggregation translates to an instance scope variable in Java.
The difference between an association and an aggregation is entirely conceptual
and is focused strictly on semantics. An aggregation also implies that no cycles
are in the instance graph. In other words, an aggregation must be a unidirec-
tional relationship. The different in Java between an association and aggrega-
tion is not noticeable. As stated previously, it’s purely a matter of semantics. If
you are unsure as to when to use an association or an aggregation, use an asso-
ciation. An aggregation need not be used often.

Composition Class Diagram

A special form of aggregation, which implies lifetime responsibility of the part
within the whole, composition is also nonshared. Therefore, while the part
doesn’t necessarily need to be destroyed when the whole is destroyed, the whole
is responsible for either keeping alive or destroying the part. The part cannot be
shared with other wholes. The whole, however, can transfer ownership to
another object, which then assumes lifetime responsibility. The UML Semantics
documentation states the following:

Composite aggregation is a strong form of aggregation which requires
that a part instance be included in at most one composite at a time and
that the composite object has sole responsibility for the disposition of
its parts. [SEM01]

64 CHAPTER 3 Fundamental UML

Java UML

public class Employee {
private EmpType et[];
public EmpType getEmpType() {

…
}

}

EmpType
0 . . *

Employee
1

c03.qxd p049-072 11/15/01 5:38 PM Page 64

The relationship below between Employee and TimeCard might better be rep-
resented as a composition versus an association, as in the previous discussion.

Generalization

Illustrating a relationship between a more general element and a more specific
element, a generalization is the UML element to model inheritance. In Java, a
generalization directly translates into use of the extends keyword. A generaliza-
tion also can be used to model relationships between actors and use cases.

Realization Class Diagram

A relationship that specifies a contract between two entities, in which one
entity defines a contract that another entity guarantees to carry out. When
modeling Java applications, a realization translates directly into the use of the
implements keyword. A realization also can be used to obtain traceability
between use cases, which define the behavior of the system, to the set of classes
that guarantee to realize this behavior. This set of classes that realize a use case
are typically structured around a collaboration, formally known as a use case
realization.

Class and Use
Case Diagrams

Fundamentals Elements 65

Java UML

public class Employee {
private TimeCard tc[];
public void maintainTimeCard() {

…
}

}

TimeCard
0 . . *

Employee
1

Java UML

public abstract class Employee {

}
public class Professor extends
Employee {

}

ProfessorEmployee

c03.qxd p049-072 11/15/01 5:38 PM Page 65

3.3 Annotations
The only true annotational item in the UML is a note. Annotations simply pro-
vide further explanation on various aspects of UML elements and diagrams.

Notes Any Diagram

Notes in the UML are one of the least structured elements. They simply repre-
sent a comment about your model. Notes can be, though need not be, attached
to any of the other elements and can be placed on any diagram. Attaching a note
to another element is done via a simple dotted line. If the note is not attached to
anything, we can omit the dotted line. The closest thing that notes translate to in
Java is a comment. However, it isn’t likely that we would copy the text from a
note and place it in our Java code. Notes provide comments regarding our dia-
grams; comments describe code in detail.

3.4 Extensibility Mechanisms
The extensibility mechanisms don’t necessarily have direct mappings to Java.
However, they’re still a critical element of the UML. These mechanisms are
commonly used across diagrams, and understanding their intent is important.

66 CHAPTER 3 Fundamental UML

Java UML

/** Here is an example of a Java
comment. Typically, this text
will not be exactly the same as
the text contained within the
note.
*/

Here is an example of a note in
UML. Notice the dotted line
denoting attachment.

Java UML

public interface CollegePerson {

}
public class Professor implements
CollegePerson {

}

ProfessorCollegePerson

c03.qxd p049-072 11/15/01 5:38 PM Page 66

We can create our own mechanisms, which enables us to customize the
UML for our development environment. We should use caution in creating our
own mechanisms. The UML is a robust language. Before defining our own
extension mechanisms, we should be sure the mechanism does not already exist
within the language.

Stereotype

A stereotype is used to create a new fundamental element within the UML with
its own set of special properties, semantics, and notation. UML profiles can be
created that define a set of stereotypes for language-specific features. For
instance, Sun is currently working on a UML profile that defines a mapping
between the UML and Enterprise JavaBeans (EJB).

Tagged Values

Tagged values enable us to extend the UML by creating properties that can be
attached to other fundamental elements. For instance, a tagged value may be
used to specify the author and version of a particular component. Tagged values
also can be associated with stereotypes, at which point attachment of the stereo-
type to an element implies the tagged value.

Constraint

Constraints enable us to modify or add various rules to the UML. Essentially,
constraints enable us to add new semantics. For example, across a set of associ-
ations, we may use a constraint to specify that only a single instance is manifest
at any point in time.

3.5 Introduction to Diagrams
These sample diagrams provide illustrations of how we interpret various rela-
tionships on individual diagrams. We also discuss how these different diagrams
can be used in conjunction with each other to further enhance communication.
Our example here depicts the Java event-handling mechanism used within the
Abstract Windowing Toolkit (AWT). When developing Java applications, it’s
quite common to use a pattern similar to that of AWT to handle events within
our application. In fact, this event-handling mechanism within Java is an imple-
mentation of the observer [G0F95] and command design pattern [G0F95].

Introduction to Diagrams 67

c03.qxd p049-072 11/15/01 5:38 PM Page 67

3.5.1 Sequence Diagram

The rectangles at the top of our sequence diagram in Figure 3.4 denote objects.
Objects have the same rectangular iconic representation as classes. There are
three primary ways to name objects. The first, seen at the far left in Figure 3.4, is
to provide an object name. When using this form, we don’t necessarily know the
name of the class that this object is an instance of. This representation, not seen
in Figure 3.4, is commonly used to represent the fact that any object, regardless
of its type, can invoke the flow of events that this sequence diagram is modeling.
The second, represented by the remaining objects, denotes that an object is an
instance of a specific class. This form is illustrated by preceding the name of the
class with a colon. The third way of naming an object is to use a combination of
the previously described two approaches. This way is not shown on Figure 3.4.
Of the three ways to name objects on sequence diagrams, the second is most
common. In each instance, the object’s name is underlined.

A directed arrow represents messages on sequence diagrams. Associated
with this directed arrow is typically a method name denoting the method that is

68 CHAPTER 3 Fundamental UML

Figure 3.4 Sequence Diagram for Event-Handling Simulation

: EventExample : TimeEventSource : TimeChangedEvent: TimeChangeListener

The <<create>> message
creates objects that
implement this interface.

1. <<create>>

2. addTimeChangeListener(TimeChangeListener)

4. <<create>>

5. timeChange(TimeChangeEvent)

6. getSource()

7. processEvent()

3. start()

c03.qxd p049-072 11/15/01 5:38 PM Page 68

triggered as the result of the object’s communication. In Figure 3.4, which
simulates Java’s AWT event-handling mechanism, my EventExample object
sends a method to the TimeEventSource object. This message results in the
addTimeChangeListener() method being triggered. The ordering of the mes-
sages sent between objects is always read top to bottom and typically is read left
to right, although reading left to right is not a requirement. Be sure to notice the
notes used in Figure 3.4 to enhance understanding.

Let’s walk through the sequence diagram in further detail. The numbers
that follow correspond to the numbers in Figure 3.4.

1. Some EventExample, which can be any object in our system, begins our
event simulation by creating a TimeChangeListener object. Obviously, we
can’t have a true instance of an interface, and we certainly won’t. However,
it’s important to communicate that the TimeEventSource isn’t coupled to
the implementation of the TimeChangeListener but to the listener itself.
That is clearly communicated in Figure 3.4.

2. The EventExample object now registers the TimeChangeListener with the
TimeEventSource object.

3. EventExample calls start on the TimeEventSource, which begins sending
events to the listeners that have been registered with it.

4. The TimeEventSource creates a TimeChangeEvent object. This TimeChage
Event object encapsulates information regarding this event.

5. The TimeEventSource loops through each of its listeners, calling the
timeChange method on each.

6. Optionally, the TimeChangeListener can obtain a reference to the object
that caused the event notification. This reference is returned a generic refer-
ence to java.lang.Object.

7. TimeChangeListener calls its processEvent() method to handle processing
the event.

In Figure 3.4, notice that we have attached a note to the TimeChangeLis-
tener interface specifying that we will actually create a class that implements
this interface. This note allows for a great deal of flexibility in our diagram,
because the entire message sequence holds true regardless of what class we use
in place of TimeChangeListener. We also may wish to use a note to specify that
when the TimeEventSource object notifies its listeners of a time change; it may
notify multiple listeners, resulting in a loop. The point is that developers who
need to interpret this diagram, and use it to construct code, must have the infor-
mation provided in the notes to effectively construct code. Notes are a great aid

Introduction to Diagrams 69

c03.qxd p049-072 11/15/01 5:38 PM Page 69

in helping us understand more fully the details associated with this sequence of
events. Notes appear on most diagrams and should be used often.

We typically have many sequence diagrams for a single class diagram
because any society of classes most likely interacts in many different ways. The
intent of a sequence diagram is to model one way in which the society interacts.
Therefore, to represent multiple interactions, we have many sequence diagrams.

Sequence diagrams, when used in conjunction with class diagrams, are an
extremely effective communication mechanism because we can use a class dia-
gram to illustrate the relationships between the classes. The sequence diagram
then can be used to show the messages sent among the instances of these classes,
as well as the order in which they are sent, which ultimately contribute to the
relationships on a class diagram. When an object sends a message to another
object, that essentially implies that the two classes have a relationship that must
be shown on a class diagram.

3.5.2 Class Diagram

The class diagram in Figure 3.5 is a structural representation of the Java
AWT event simulation. Note each of the relationships that appear on this dia-
gram. First, our EventExample class has relationships to TimeEventSource and
TimePrinter, which corresponds to the messages an EventExample object must
send to instances of these classes. On our sequence diagram in Figure 3.4, how-
ever, we didn’t see a TimePrinter object. In fact, the sequence diagram did con-
tain a TimePrinter, but it was in the form of the TimeChangeListener interface,
which the note on the diagram in Figure 3.4 didn’t clarify. As we can see in Fig-
ure 3.5, the TimePrinter implements the TimeChangeListener interface. Also,
notice the structural inheritance relationships depicted on this diagram that
weren’t apparent in Figure 3.4.

When interpreting the diagrams, it often is easiest to place the class diagram
and sequence diagram side by side. Begin reading the sequence diagram, and as
the messages are sent between the objects, trace these messages back to the rela-
tionships on the class diagram. Doing so should be helpful in understanding
why the relationships on the class diagram exist. After having read each of the
sequence diagrams, if you find a relationship on a class diagram that can’t be
mapped to a method call, you should question the validity of the relationship.

3.5.3 Package Diagram

Package diagrams are really a form of a class diagram. The difference is that a
package diagram shows the relationships between our individual packages. We
can think of a package diagram as a higher-level view into our system. This

70 CHAPTER 3 Fundamental UML

c03.qxd p049-072 11/15/01 5:38 PM Page 70

becomes important when understanding the system’s architecture. The depen-
dency relationships illustrated in Figure 3.6 provide an indication of the direc-
tion of the structural relationships among the classes within the various
packages. Notice that the eventhandling package is dependent on the util
package, which implies that classes within eventhandling can import classes
within util but not vice versa. This distinction is an important one because our
package dependencies must be consistent with the relationships expressed on
the corresponding class diagrams.

Package diagrams, when combined with class diagrams, are an extremely
effective mechanism to communicate a system’s architecture. A diagram such as
the one in Figure 3.6 provides a high-level glimpse into a system’s overall struc-
ture. Based on this high-level view, developers can make assumptions regarding
the relationships between individual classes, which becomes especially helpful
as new developers join the project and need to be quickly brought up to speed—

Introduction to Diagrams 71

Figure 3.5 Class Diagram for Event-Handling Simulation

Object
(from lang)

EventObject
(from util)

TimeChangeEvent

EventExample

TimePrinter TimeEventSource

+addTimeChangeListener()
+start()
+notifyTimeChange()

We do not show inheritance from
Object, as this is implicit.

EventListener
(from util)

1
1

1

1

0 . . n

0 . . n

TimeChangeListener

c03.qxd p049-072 11/15/01 5:38 PM Page 71

or when developers need to maintain a system they may have previously
worked on but haven’t interacted with in some time. Either way, this form of
“architectural modeling” is beneficial. The code for this example can be found
in Appendix C.

3.6 Conclusion
As we’ve seen, many of the elements that compose the UML have a precise map-
ping to the Java programming language, which is consistent with the claims that
the UML is a precise and unambiguous communication mechanism. As individ-
uals associated with software development, we must interpret each of these ele-
ments in a fashion that is faithful to this claim. Different interpretations of these
elements can result in miscommunication, which is one of the challenges the
UML attempts to resolve.

Though the UML is precise and unambiguous, we also must make sure that
we don’t derive more meaning than our diagrams actually convey. The UML is
not a visual programming language but a modeling language. As such, the
intent is not to model at the same level of detail at which code exists. For
instance, an association has a multiplicity adornment associated with it at each
end. If at one end the muliplicity is 0..*, we must interpret this as an optional
collection. Therefore, we must accommodate for the potential of a null object
reference in our code. The way in which we accommodate this is typically left
up to the implementor. It may be implemented as an array, a vector, or a custom
collection class. The diagram typically doesn’t state how to implement some-
thing, communicating instead only that we must accommodate that need.

72 CHAPTER 3 Fundamental UML

Figure 3.6 Package Diagram for Event-Handling Simulation

eventhandling
(from Logical View)

 utl
(from Java)

c03.qxd p049-072 11/15/01 5:38 PM Page 72

