

Benefits of the Build
- Kirk Knoernschild
- www.qwantify.com

Original article as published in March 2005 issue of Software Development Magazine

Introduction
What's the single most important activity your team can perform to get your project
moving along? An automated and repeatable build! Why? Because an automated build
produces the only artifact that really matters to everyone associated with the project...the
executable application. Certainly there are other valuable artifacts that a team may
produce, and possibly even find useful. But all other pretty documents will be quickly
forgotten if you don't deliver the final product.

Defining the Build
Embodied in XP's Continuous Integration practice, an automated and repeatable build
can work wonders for your development team. First and foremost, an automated and
repeatable build forces you to integrate early and integrate often. You’re guaranteed to
always have a system that works. Of course, there are a couple of rules you have to
follow. First, any compile error that ever creeps in must be immediately resolved. Since
you should be using a version control system, such as CVS, this means that the CVS
projects comprising your application should always be free of any compilation errors.
Second, any unit test that fails must be immediately fixed. Unit tests should be run after
each change you make, and if you ever find that a unit test fails, you should treat this
failure with the same urgency you’d give a compile error. While pretty simple, these two
rules are key elements because they are part of what defines an automated and repeatable
build. So here are the steps, in order, defining the steps of an automated and repeatable
build [Fowler].

• It must be a clean compile, meaning that no compiler generated syntactical errors
occur. While it's acceptable to encounter certain warnings, such as those
generated by deprecated method usage, you should strive to remove these
warnings before future builds.

• The build should be done using the most current version of all source files. There
are occasions where you'll want to compile older versions of code to revert back
to a previous version. Typically, when compiling these older versions you'll use
the source files consistent with the version of the application you're building.

© 2004, Kirk Knoernschild 1

• A clean build implies that all application source files are compiled. Conditional
compiles or partial builds do not prove syntactical correctness of the entire
application.

• The build should generate all files representing the units of deployment. For Java
applications, this means all .jar, .war, and .ear files should be created.

• The build should verify that the application is functionally correct, meaning all
unit tests for the application should be run. If all unit tests pass successfully, the
build is successful.

• Upon completing a successful build, it’s good practice to deploy the build to a
development region so that it can be further verified by developers, and reviewed
by any interested stakeholders beyond the development team.

Frequency of the Build
But how often should your team perform the build? The frequency of builds is really a
product of your development team and environment. I've heard some say that the build
should be done multiple times daily, which is the ideal. However, I've found that once a
day proves pretty successful too. And if you decide to only build a couple times a week,
that's fine as well. But don’t go much longer than a few days since it's likely errors will
creep in (ie. compile errors or junit failures), and you'll wind up devoting a larger part of
your effort correcting bugs over growing the system.

Keep in mind that if your build ever fails due to a compilation error or a failed test case, it
must become your team’s immediate priority to fix that problem before adding any new
functionality. So building multiple times daily is ideal since you know there won’t be
long periods of time between builds that allow more than just a few bugs to surface. You
may be at the mercy of developers who choose to work extended periods of time without
releasing their changes to a version control system. It’s best if you can establish ground
rules advocating that developers release early and often, preferably multiple times per
day. Enforcing the rule that failed builds must become the immediate focus of the entire
team establishes a peer review system that usually works well. I don’t want my changes
to serve as the reason why the team must quit working to correct any errors.

Build Promotes Agility
Aside from continuously proving integration though, an automated build facilitates a
number of other very useful practices.

• You can perform it anytime you want. Ideally, you should schedule the build to
run at certain times throughout the day or each time code is checked into a version
control system. With some experimentation, you’ll find what works best for your
development team. Keep in mind though, that since the build is repeatable, you
can also run it on demand.

• You verify consistency. Because it's automated and repeatable using a build tool
such as Ant (http://ant.apache.org), you've assured yourself it will be run the same

© 2004, Kirk Knoernschild 2

way each time. Without an automated build, you cannot guarantee that a
developer won't forget to do something important. You should rarely consider
using a development tool’s export utility to generate your deployable unit. Too
much manual intervention is typically required, leaving the door open for
problems.

• You ensure there are no compile errors. Even though most project teams are under
incredible pressure to deliver, it doesn't do help anyone to pile code that doesn't
work on top of code that doesn't work. It’s ironic though, that I’ve seen this
happen on numerous occasions. An automated and repeatable build adhering to
the rules above ensures this won’t happen.

• You verify your code’s functional correctness. A key component to any
automated and repeatable build is that your unit tests are run immediately after the
source has been compiled successfully. Most developers learned long ago that just
because something compiles, doesn't mean it works. Unfortunately, while we
learned it, we don't always practice it.

• You prove your physical structure. There are different ways to perform the build.
You can build the entire application with all source code in the classpath, and
that's pretty useful. But you can also perform a levelized build, whereby those
physical units with no dependencies are built first, followed by those components
that have dependencies on previously compiled components. A levelized build is
valuable since it can enforce the dependency structure of your application
components. If an undesirable dependency creeps in, the build will fail.

• You can drive other important lifecycle activities. Frequent customer feedback is
very necessary to ensure you give customers what they need, instead of what they
ask for. If you have a system that works, it's much easier to get early and frequent
feedback. A great way to garner feedback from your customers is to show them
the system, and allow them to experiment by simulating their work. Frequent
system demos involving customers and developers are a great way to facilitate
discussion and iron out any wrinkles associated with especially tricky or complex
areas of the applications. Full system demos help everyone stay in tune with the
overall vision of the project, especially as some folks become detached as they
drown themselves in the details of a specific use case or subsystem.

• You can use it to get objective feedback. Build tools, such as Ant, often times
have tasks that allow you to analyze your code base. For instance, Jdepend
(http://www.clarkware.com/software/JDepend.html) and JavaNCSS
(http://www.kclee.de/clemens/java/javancss) can give you feedback that allows
you to somewhat objectively analyze the quality of your source code.

• You can use it to review your code. Other build tools, such as PMD
(http://pmd.sourceforge.net), can eliminate those mundane and often useless code
reviews. Tools like this can scan your source code and identify potential
problems, or violation of rules that you define.

© 2004, Kirk Knoernschild 3

• You never really change how you work. Hopefully, you'll eventually release your
application in a production environment. Once you do, continue to perform the
build just as you always did. This makes maintenance much easier since you don't
have to radically redefine how you're doing things. In fact, every line of code you
write after the first is maintenance. So don't treat maintenance as a phase of a
macro lifecycle. Treat maintenance as a way to grow your application, and
continually maintain the application’s behavior.

• You prove the full lifecycle. You develop, test, integrate, and deploy every time
you build, helping you avoid the big bang. That is, the bang you hear when your
application explodes as you try to move it from a local development environment
to a shared server, or attempt to integrate with the work of another developer after
not doing so for a long period of time. Instead, integration is continuous and
performed each time you execute the build.

• It's a grass roots approach to agility. The beauty of an automated build is that
nobody really cares much about it. So it's doubtful you'll encounter much
resistance from management or process purists along the way. In fact, everyone
knows that at some point you have to compile and deploy the application, so
nobody views it as a threat to the old school approach to software development.
I've not yet run across a situation whereby someone balked at the thought of
creating build scripts early in the project. But once the build is working, it's hard
to deny the benefits associated with each of the points above. And all of the above
points are steps toward a more agile process where you don't wait until a few
weeks before the ship date to integrate or roll the application out for testing.
Instead, you roll the application out early and often.

Conclusion
An automated and repeatable build is a valuable asset for any development team. It
enables a number of other useful lifecycle activities. Instead of wasting valuable time
debating the merits of XP, RUP, or your other favorite process, devote your efforts to
creating and refining your automated and repeatable build process. Then use the build to
perform other activities that make sense for your project, regardless of which process you
gleaned those activities.

Bibliography
[Fowler] Fowler, Martin and Foemmel, Matthew. Continuous Integration.
http://www.martinfowler.com/articles/continuousIntegration.html

© 2004, Kirk Knoernschild 4

	Benefits of the Build
	Introduction
	Defining the Build
	Frequency of the Build
	Build Promotes Agility
	Conclusion
	Bibliography

